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Abstract

Recent astronomical observations show that the universe is not only expanding but also undergoing accelerated expansion
[A.G. Riess, et al., The farthest known supernova, Astrophys. J. 560 (2001) 49–71; P.K. Townsend, M.N.R. Wohlfarth, Accelerating
cosmologies from compactification, Phys. Rev. Lett. 91 (2003) 061302]. Then the timelike convergence condition does not hold
every time, i.e. the Ricci curvature Ric(v, v) cannot be nonnegative for every timelike vector v. We obtain the volume expansion
rate of the universe based on the integral norm of negative part of the Ricci curvature along a timelike geodesic.
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1. Introduction

Let M be an n-dimensional Lorentzian manifold. In classical general relativity, it is assumed that the Ricci curvature
satisfies that

Ric(v, v) ≥ 0

for any timelike unit vector v, which is the timelike convergence condition, which says that gravity attracts on
average [4]. Then the timelike convergence condition implies that there can be no acceleration in the expansion
of the universe, i.e. if V (t) is the volume of a small ball of test particles that start out at rest relative to each other, then
limV →0 V ′′(t) ≤ 0 [1].

But recent astronomical observations appear to show that the universe is not only expanding but also undergoing
accelerated expansion [7,8]. So it is necessary to modify the timelike convergence condition Ric(v, v) ≥ 0. Moreover,
we cannot assume that Ric(v, v) for any timelike unit vector v has a lower bound since M is not compact.
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We will obtain the volume expansion rate with the average of the negative part of the Ricci curvature. Let an
observer move along a timelike geodesic Γ . Let

ρ(t) = max{0,−Ric(Γ ′(t),Γ ′(t))},

which is the negative part of the Ricci curvature along Γ . For a positive real number p, let

kΓ (p, R) =
1
R

∫ R

0
ρ(t)pdt.

Then kΓ is an average of the negative part of the Ricci curvature along Γ . If Ric(v, v) ≥ 0 for any timelike vector v,
then kΓ (p, R) = 0 for any R and Γ .

Let Γ (0) = x0 and H be the spacelike hyperspace H perpendicular to Γ ′(0) around x0 ∈ H at time t . Let B(x0, a)
be the small ball in H around x0 which is diffeomorphic to Rn−1. Let particles at x in B(x0, a) start out at rest relative
to each other and the timelike geodesic passing through x be Γx with Γx (0) = x . Then we consider the coordinate
map φ : B(x0, a) × R → M such that φ(x, t) = Γx (t). Around x0 ∈ M and a spacelike hyperspace H which is
perpendicular to Γ ′(0), we write the volume element as dvol = ωdt ∧ dθn−1, where dθn−1 is the volume element
on H . Then ω(x0, t)dθn−1 is the volume form of the spacelike hyperspace φ(B(x0, a), t) perpendicular to Γ ′(t) at
φ(x0, t). Let V be the infinitesimal volume expansion rate at t = 0, i.e. d

dt |t=0 ω = Vω(0). Our main theorem is as
follows.

Theorem 1. Let M be an n-dimensional Lorentzian manifold. Then

ω(x0, R)
ω(x0, 0)

≤

(
V R

n − 1
+ 1

)n−1

exp(R
√

n − 1kΓ (p, R)
1

2p ).

If limR→0 kΓ (p, R) = K , then

lim
R→∞

logω(x0, R)
R

≤
√

n − 1K
1

2p .

In particular, if limR→0 kΓ (p, R) = 0, asymptotically the universe does not expand exponentially rapidly, i.e. for any
ε > 0,

lim
R→∞

ω(x0, R)
eεR = 0.

We do not need to assume 2p > n, unlike [6].
In Riemannian geometry, for an n-dimensional compact Riemannian manifold M , we define the volume entropy

h(M) of M as follows:

h(M) = lim
R→∞

log(vol(B(x, R)))
R

,

where B(x, R) is the R-ball centered at x in the universal covering space M̃ [5]. An upper bound of the volume
entropy for negatively curved manifolds is obtained only with integrals of Ricci curvature over closed geodesics in
M [5].

Note that in the Robertson–Walker model, kΓ (p, R) depends only on time, so we obtain an upper bound of the
total volume expansion rate with kΓ (p, R) for only one timelike geodesic Γ from the above theorem.

2. Proof of main theorem

Let c(s) be a curve from x0 to x ∈ B(x0, a) in H . Let J (t) =
∂
∂s |s=0Γc(s)(t); then J (t) is a Jacobi field along the

timelike geodesic Γ (t). Let us write J ′
= AJ for a linear transformation A depending on t . Then the Riccati equation

is

A′
+ A2

+ R = 0
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for the curvature operator R [2,3]. Hence we obtain that

tr A′
+ tr A2

+ Ric(Γ ′,Γ ′) = 0. (2.1)

We write

ω′
=

d
dt
ω = hω. (2.2)

Then h = tr A, so h satisfies that

h′
+

h2

n − 1
≤ −Ric(Γ ′,Γ ′), (2.3)

from (2.1) [6].
If Ric(Γ ′,Γ ′) ≥ 0 for any t ≥ 0, then

h′
+

h2

n − 1
≤ 0, (2.4)

which implies that(
1
h

)′

= −
h′

h2 ≥
1

n − 1
.

If ω′(0) = Vω(0), then h(0) = V and so

h(t) ≤
n − 1

t +
n−1

V

.

We denote n−1
t+ n−1

V
by h0(t) and

h′

0 +
h2

0
n − 1

= 0. (2.5)

Let ψ(t) = max{0, h(t)− h0(t)}. Since ω′

ω
= h, integrating this equation, we obtain that

log
(
ω(x0, R)
ω(x0, 0)

)
=

∫ R

0
hdt ≤

∫ R

0
h0dt +

∫ R

0
ψdt. (2.6)

Then we have

ω(x0, R) ≤ e
∫ R

0 ψdt e
∫ R

0 h0dtω(x0, 0). (2.7)

Integrating h0, we obtain that∫ R

0
h0dt = (n − 1) log

(
V R

n − 1
+ 1

)
so

e
∫ R

0 h0dt
≤

(
V R

n − 1
+ 1

)n−1

. (2.8)

Now it remains to calculate e
∫ R

0 ψdt .
We will prove the following lemma similarly to Lemma 2.2 in [6]:

Lemma 1. For any p > 0, we have∫ r

0
ψ2pdt ≤ (n − 1)p

∫ r

0
ρ pdt.
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Proof. From (2.3) and (2.5), we have

ψ ′
+

ψ2

n − 1
+

2ψh0

n − 1
≤ ρ (2.9)

as we see in [6]. Multiply by ψ2p−2 and integrate to get∫ r

0
ψ ′ψ2p−2dt +

1
n − 1

∫ r

0
ψ2pdt +

2
n − 1

∫ r

0
h0ψ

2p−1dt ≤

∫ r

0
ρψ2p−2dt. (2.10)

Since (ψ2p−1)′ = (2p − 1)ψ ′ψ2p−2,∫ r

0
ψ ′ψ2p−2dt =

1
2p − 1

ψ2p−1
∣∣∣∣r
0

≥ 0. (2.11)

Inserting this in (2.11), we obtain that

1
n − 1

∫ r

0
ψ2pdt +

2
n − 1

∫ r

0
h0ψ

2p−1dt ≤

∫ r

0
ρψ2p−2dt, (2.12)

which implies that

1
n − 1

∫ r

0
ψ2pdt ≤

∫ r

0
ρψ2p−2dt

≤

(∫ r

0
ρ pdt

) 1
p
(∫ r

0
ψ2pdt

)1−
1
p
. (2.13)

Dividing by (
∫ r

0 ψ
2pdt)1−

1
p , then we obtain that

1
n − 1

(∫ r

0
ψ2pdt

) 1
p

≤

(∫ r

0
ρ pdt

) 1
p
. (2.14)

Consequently, we have∫ r

0
ψ2pdt ≤ (n − 1)p

∫ r

0
ρ pdt, (2.15)

which completes the proof of Lemma 1. �

In the proof of Lemma 2.2 in [6], it is an essential condition that p > n/2, but our lemma holds for any positive p.
By the Hölder inequality, we have

1
R

∫ R

0
ψdt ≤

1
R

(∫ R

0
ψ2pdt

) 1
2p

R
1
q

≤
1
R

(
(n − 1)p

∫ R

0
ρ pdt

) 1
2p

R
1
q

≤
√

n − 1
(

1
R

∫ R

0
ρ pdt

) 1
2p

(2.16)

for 1/2p + 1/q = 1. We have

1
R

∫ R

0
ψdt ≤

√
n − 1

(
1
R

∫ R

0
ρ pdt

) 1
2p

≤
√

n − 1 (kΓ (p, R))
1

2p . (2.17)

Inserting (2.8) and (2.17) to (2.7), we obtain Theorem 1. �
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